Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 2, 2025
-
Even though heavily researched, a full formal model of the x86-64 instruction set is still not available. We present libLISA, a tool for automated discovery and analysis of the ISA of a CPU. This produces the most extensive formal x86-64 model to date, with over 118000 different instruction groups. The process requires as little human specification as possible: specifically, we do not rely on a human-written (dis)assembler to dictate which instructions are executable on a given CPU, or what their in- and outputs are. The generated model is CPU-specific: behavior that is undefined is synthesized for the current machine. Producing models for five different x86-64 machines, we mutually compare them, discover undocumented instructions, and generate instruction sequences that are CPU-specific. Experimental evaluation shows that we enumerate virtually all instructions within scope, that the instructions' semantics are correct w.r.t. existing work, and that we improve existing work by exposing bugs in their handwritten models.more » « less
-
Prevosto, Virgile; Seceleanu, Cristina (Ed.)Reachability is an important problem in program analysis. Automatically being able to show that – and how – a certain state is reachable, can be used to detect bugs and vulnerabilities. Various research has focused on formalizing a program logic that connects preconditions to post-conditions in the context of reachability analysis, e.g., must+, Lisbon Triples, and Outcome Logic. Outcome Logic and its variants can be seen as an adaptation of Hoare Logic and Incorrectness Logic. In this paper, we aim to study 1.) how such a formal reachability logic can be used for automated precondition generation, and 2.) how it can be used to reason over low-level assembly code. Automated precondition generation for reachability logic enables us to find inputs that provably trigger an assertion (i.e., a post-condition). Motivation for focusing on low-level code is that low-level code accurately describes actual program behavior, can be targeted in cases where source code is unavailable, and allows reasoning over low-level properties like return pointer integrity. An implementation has been developed, and the entire system is proven to be sound and complete (the latter only in the absence of unresolved indirections) in the Isabelle/HOL theorem prover. Initial results are obtained on litmus tests and case studies. The results expose limitations: traversal may not terminate, and more scalability would require a compositional approach. However, the results show as well that precondition generation based on low-level reachability logic allows exposing bugs in low-level code.more » « less
An official website of the United States government
